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SECTION I

INTRODUCTION

The major uncertainty in the calculation of the conductivity at a

given temperature in certain plasmas representative of those produced as

combustion products in MHW generators is due to the uncertainty in the

low energy momentum transfer cross sections for electron scattering in
~1

water vapor. The most reliable values of such low energy cross sections

are those deduced from electron swarm experiments. The determination of

cross sections from swarm experiments involves solving the Boltzmann equation

for the electron energy distribution function using some trial set of

assumed cross sections. Certain integrals of the distribution function yield

the quantities measured in swarm experiments, such as drift velocities and

diffusion coefficients. By ccRiparing the calculated values of these

measurable quantities with those found experimentally, it is possible to

reach useful conclusions about the trial set of cross sections. An iterative

procedure can then allow deduction of a set of cross sections which is consisteni

with swarm observations. The low energy cross sections are thus determined

and are some of the most reliable.

The conventional method of solving the Boltzmann equation in the context

of electron swarm experiments relies on the approximation that the inelastic

scattering cross sections are much smaller than the elastic. Because of the

large dipole moment in H20 , the rotational cross sections will be rather large

and comparable to the elastic. Therefore, before attempting to determine

cross sections in H20 from swarm experiments it has been necessary to improve

on the solution and to evaluate the errors under some circumstances.

This report details our efforts in that direction and shows results for

several cases using the extended analyses.
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The central problem is to deduce the distribution function from

assumptions about the cross sections. The solution must be done numerically

and in the course of the analysis it must be done many times. It is necessary

to strike a balance between accuracy and required computer resources.

The numerical problem is sufficiently difficult that it is necessary to

involve assumptions which are of questionable validity such as the assumption

of a nearly spherical electron energy distribution function. A major concern

is the evaluation of the errors generated. Some of the errors arise because

of physical assumptions which have the effect of changing the problem.

In evaluating the error it is necessary to judge whether the simplified

problem is similar enough to the initial problem. Another broad class

of errors arises from inadequacies in the numerical analysis. The usual

situation is that these errors depend on both the procedure and the data.

For both classes of error we have made substantial progress in working

out procedures with less error than before.
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SECTION II

THE BOLTZMANN EQUATION

The motion of electrons traveling through a neutral gas under the influence

of an electric field may be described mathematically by the Boltzman equation,

__ - 4 0 - 4. 4 1
F . f°(rvt) r r v a V f(r,v,t) = c[f(r,v,t)J (1)

where f(r,v,t) is the electron energy distribution function. The acceleration,

a, is that produced by the field (a = eE/m). The right hand side of the equation

is the rate of change in the distribution function due to collisions. Since

the only external force in the problem is a uniform electric field, the distri-

bution function is cylindrically symmetric about the field direction.

Normally it is assumed the experimental situation is adequately described

with the assumption that f(r,v,t) is independent of position and time. These

asaumpt±ons ieaa to tne tirst two terms ot Eq. (1) being zero. Actually, the

configuration of the experiments imply spatial gradients which can also

cause temporal variations. The impact of the density gradients on the

distribution function is relatively small and can be found by a perturbative

2
scheme proposed by Skullerud. First, we discuss the spatially independent

equation and its solutions.

With the assumption that the first two terms of Eq. (1) are negligible

the Boltzmann equation becomes

a fv (V ) - c[f (o) = . (2)

where the collision term has the form,

N r 3c~f(v)] -NvQ(v,6 S)fv +-E 'Q VGsSv-g)dv (3
v k-o f



The first term on the right of Eq. (3) represents scattering-out of the velocity

volume d3v element centered about v and the second term is the scattering-in

component from all the volume elements d3v' centered about v'. The symbols

have the following meanings;

N - neutral particle density

Q(v,Gs) total scattering cross section

6 - scattering angle5
Qk(V,6s) - scattering cross section for the kth process,

k-0 for elastic scattering

The delta functions serve the purpose of picking out those electrons of

velocities v' that are scattered into d3v after a collision of the kth type.

The integral over v' may be immediately performed given gk(v), the initial velocity

v' in terms of the final velocity v. The gk(v)'s will depend on the particular

processes considered.

Since the energy loss in elastic collisions is small, the second term with

k=O may be expanded in a Taylor series about v and terms beyond O(m/M)2 may be

neglected. The resulting collision term is

Nv[f (wl',v) - f(w,v)]Q (v,6 s)dw'

+ N a (l-cose)Q (v,E )v4f(w',v)dw' (4)
v 2 M v s

+ 2 6) - f(wlv)Qk(! (v,6s)]dw'
k v

The sum is to be made over all inelastic and superelastic processes with cross

sections Qk and Q k9 respectively.

In order to convert the vector dependence of the single function f into the

more easily handled scalar dependence of a coupled set of functions f£

we expand f in terms of Legendre functions and the unknown coefficients fj

n

f ) z f (v)P (cose) . (5)

4n _



?or zero fields the distribution function must be spherically symmetric.

At higher fields more terms are needed to represent the anisotropy in f(v).

Most work in the field has been done assuming that n=l yields an adequate

solution. This is referred to later as the two term solution. We do not constrain

n to be small but in general find that n need not be larger than 7.

After substituting this expansion in Eq. (2), we multiply both sides by

P (cosG) and integrate over all 6 to yield n+l = Np coupled differential

equations for j-0, ... n. The coupling is between any three adjacent

expansion coefficients according to the equation,

r df Cc) d ) _

2j-l Ed 2 J- J 2j+3 I d + 2 j+l J
-- NQ(c)f~ (e) + Ncf.(C)JP (cos6)Qo(E,6 )dw'

JNQ~~ J J J s

+N (C+e k)f j (E+- ) Pj (cos s) Qk(*) (ck,6s)d (6)

- recoil = 0 j=O, ... n

In writing this equation we have made a change of variables to E = 1/2 mv
2

and have made use of the properties of Legendre functions. These equations

are quite general so far and both superelastic and inelastic as well as

anisotropic scattering may be explicitly included. In going from Eq. (2)

to Eq. (6) a partial differential equation in two variables has been converted

to N ordinary differential equations in one variable. The principal merit

to this step comes from the fact that an adequate solution can be found

with N relatively small.

5



SECTION III

METHOD OF SOLUTION

The set of first order differential equations (6) can be compactly expressed

in matrix form as

AI(c)F'(c) + AO()F(e) + E Ak(E Ck)F(+ck) - 0 (7)

where the elements of the column vector F(E) are the functions fg(E) and the

A's are square matrices of order N . The A's are matrices whose rows containp

the coefficients appearing in Eq. (6). Al and AO are tridiagonal and the Ak'S

are purely diagonal.

The "non-local" terms, terms written as functions of c-c k' appearing

in Eqs. (6) and (7) are due to inelastic and superelastic collisions. It is the

presence of these terms which preclude the use of common stepping methods of

solution for differential equations. An approach (backward Droloneation) taken

3
by Frost and Phelps, was to begin by assuming a solution for high energies,

usually taken to be the solution for purely elastic scattering, and then stepping

down to lower energies. If superelastic collisions are important it is necessary

to know the solution at low energies in order to calculate it at high energies.

A global approach is required in order to include the effect of the "non-local"

terms in a general way. The particular method we have adopted is a type of

collocation called Galerkin's method.4

To implement Galerkin's method, we make the additional expansion

N
F(C) = z CjS (C) (8a)

j=l J

with F(E) - F(E) + 6(c) (8b)

6



C is a vector of length N and each element is by definition independent
j p

of energy. The S (c)'s appearing in the expansion may be members of any

convenient set of functions which is complete or nearly complete in the energy

range of interest. 6(c) is a small error accounting for the fact that a

finite number of Si's do not form a complete set of functions. In our work

5
we choose the S 's to be 'cubic B-splines. Cubic B-splines are third degree

polynomials with continuous first and second derivatives. A basis of such

functions is local in the sense that at every energy point only a fixed number

( four in the case of cubic splines) of B-splines is non-zero. B-splines

are evaluated quite easily from their definition as a divided difference of

the truncated power function5 on some arbitrary energy grid, E., ... CNs.

A consequence of this choice of basis functions is that the distribution

function is zero above E It is known that the distribution is small at high

energies, and we can always choose an energy such that above it the distribution

function is so small we are not interested. An important point to examine is

that the calculated distribution function is independent of the high energy

cut off point.

By combining (8a) and (7),

Ns

C C[Al(O)S'() + AO(E)S(c) + [ Ak(c±ck)S(ck)l = A(E) (9)
j-l k

where

A(c) - -[Al(c)6'() + AO()6() + Ak(c±ck)6(c± k)]
k

if A(c) were zero for all C, then the C 's could be determined and would

yield a solution T(C) - F(C). It is possible to approximate the ideal case

7



of vanishing A(c) by forcing A(c) to be outside the space spanned by (S 1,

that is by making A(C) orthogonal to each S . Therefore we require

<Si(0)j (0)> = 0 for all I=1,...,N . (10)

Using relation 10 in Eq. (9), we obtain
N

f C [<S (c)IAl(c)Is;(c)> + <Si(c)(AO(E)S(C)>()
J=l J i

+ <S (c)I1 A(c±ck)ISj(+Ek)>] = 0

k

or in matrix form,

M C - 0 (12)

with Mij equal to the bracketed term in Eq. (11). The matrix M is a square

matrix of order N x Ns but is rather sparse because only three splines

are non-zero at any energy C.

Eq. (10) is a set of homogeneous algebraic equations. To make the solution

definite a further statement is required involving normalization. It is

satisfactory to initially set

fo(c=O) = 1 (13)

After solving the matrix equation the distribution function is renormalized

to the condition

f €1/2 f:()dc

The advantages of this method of solution are many. Most importantly,

the non-local terms appearing in Eq. (11) and which are due to anisotropic

scattering for i>0 are easily incorporated into the method. The calculation

8



of the elements of the matrix M are easy to perform using three to nine

point Gauss-Legendre quadrature techniques. Many of the calculations including

the method for solving Eq. (12) lend themselves well to the vector processing

options available on the CRAY-i computer that is being used for these calculations.

The time required is thereby reduced to seconds per run. This method also

allows for an unevenly spaced energy grid. However, since the error increases

with the ratio of the maximum to the minimum energy interval spanned by

any one B-spline, some care must be taken to optimize the grid selection.

We commonly use C 1/ 2 spacing. This seems to work quite well, although we suspect

that it is not the optimum choice.

The main drawback to this method of solution is in the amount of computer

storage required for the elements of the matrix M. No effort has been made

so far to take advantage of the sparcity of M and the storage could be reduced

Dy racrors or two to ten or more wnen uns is none. Most of the computing

time is taken in determining the Al, AO and Ak matrix elements. A significant

reduction in time could be achieved by using some analytic form for cross

sections to avoid the large numbers of interpolations required in the

case of numerical cross section input.

The truncation of the Legendre series must be made after an even number

of terms if recoil energy losses are neglected. This is because the number

degrees of freedom is equal to the differential order of the system only for an

even number of equations if there is no f0 ' term (recoil) in the i=O equation.

When recoil is included, the f0' term is present but with a very small coefficient.

To avoid any stability problems that may occur, we always keep an even number

of terms in the expansion.



The number of splines necessary to represent the distribution function

adequately depend on the assumed data. We typically use about one hundred,

although with some careful placement of the grid points, this number may

be reduced. The choice of an optimum grid in collocation methods of this sort

is a current topic of research among mathematicians and there are some mathe-

matical guidelines for chosing the grid.6 We intend to implement some of these

ideas in the computer code and expect to cut down the number of energy grid

points needed and therefore the size of the matrix M.

10



SECTION IV

TRANSPORT COEFFICIENTS

The transport coefficients are the measurable quantities in swarm experiments.

It is these parameters that we wish to calculate to compare with the experiments

and hence determine the set of cross sections that give the best fit between

experiment and theory.

Once the distribution function f(v) has been calculated, the drift velocity, 
W,

is simply the component in the field direction of

I 3

or <vz> =W =vcos9 f(v)d 3 v

Because of the orthogonality of the Legendre functions

1 V fl(v)d 3v (14)3' fv

Computation of the diffusion coefficients requires including the spatial

dependence in the distribution function. Since spatial gradients of the

electron density are small under conditions of swarm experiments, the
2

spatial dependence may be included, following Skullerud, in a perturbative way

by expanding f(r,v,t) in powers of the gradient of the electron density,

f(, ,t)- f (k)( ), (_,)k n(',t)

k-O (15)

Sf (v)n(r,t) - ?('l(v) • Vn(r,t) +

11



When this Is substituted into the Boltzmann equation,

n('r,t) f14 v f(v) - Cif (-))} (16)

(0) - an(rt) +(f(0)()- + * (1)
at f vv at a (v')

The time dependence of the electron density can be expressed in terms of the

-)'(k)transport coefficients,W 3

3n('____ -(k) *k 4(7

at k 10 (-V) nGr, t) (7

where

0)o- no attachment or ionization

w = W -- drift velocity

(2) -- diffusion tensor

The first order solution already discussed is obtained by assuming fd-r,-,"t) =(V)

Then from Eq. (16),

(0) (0)

Once Eq. (2) has been solved for f(0)), the second order solution is obtained

by keeping two terms in expansion (15). The equation to solve for 1()) is

a -V' CW?')(V'n - (V, O)f(o)(,) *(8

12



This is a vector equation and, because of the cylindrical symmetry, there

are only two independent components, one for f 1 (v) and the other forf (Z

(v - f)y (v). Eq. (18) can be solved by the method outlined above

as the right hand side is known.

The diffusion tensor D may be written as

D 1 -1. (l) (V)d3 v

The components of interest are

DpN v ) z v)3 v -- diffusion parallel to the field (19a)

t()-b- 3DTN Vx f ( )d v -- diffusion perpendicular to the field (19b)

It is DT/P and D p/i that are the measured quantities in the experiments

and the relation to DTN or DpN is

D . DN(E/N) (20)
P W

In what follows, our convergence criterion is based on values of W and DT /P

as a function of the number of Legendre functions in the distribution function

expansion rather than the distribution function itself since they are the

measurables. We have not yet spent much effort on investigating the convergence

of Dp . DT/P is more commonly measured and the convergence of Dp/Ij is

expected to be similar to DT/P.

From the equations it can be seen that W and DT/ /P are functions of E/N

and the neutral gas composition only. (This is in fact verified experimentally

up to rather large neutral densities where the Boltzmann equation begins

to break down.) By varying E/N, the experimenter is varying the average

13



energy of the electron swarm. When unfolding data from swarm experiments to

determine cross sections, experiments and calculations are compared over

as wide a range of E/N as possible, from near thermal average energies

to the region of appreciable energy loss to ionization.

14



SECTION V

MODEL RESULTS

Many of the properties of the solution, in particular the convergenc

properties, can be seen most easily in simple model cases. In this sectim, we

discuss the solutions for two model situations, a model atom and a methanemodel,

each with one inelastic cross section, before going to the case of a real las,

nitrogen (N2).

1. Model Atom

The simpliest model system we have looked at is that representative of a

model atom. The cross sections for this model are illustrated in Fig. 1.

The elastic cross section is constant at 6x 10- 16 cm2 and the inelastic

cross section is of the form k(-E k), a ramp with a threshold energy at Ek.

The scattering is purely isotropic and superelastic collisions are not incluced.

The neutral mass was taken to be 4 a.m.u.'s. The distribution function, W

and DT/i were calculated for this model over a range of E/N from I to 48 Td

( 10- 17 V cm2 ), thresholds at .2 and 2 eV, and slopes for the inelastic

cross section of 2 and 10 x 10- 16 cm2/eV. These values of input parameters

are characteristic of distribution functions with average energies from a smalL

fraction to several times the threshold energy.

Since the calculated values of transport coefficients are the quantities

compared with experiment to determine the cross sections, it is these

quantities with which we are most concerned. In particular, we would like to

evaluate the error introduced by truncating the Legendre expansion for the

distribution function after two terms as is usually done. To this end

we have calculated values of W and DTN using as many terms in the Legendre expansion

as are required for convergence.

A7
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Figure 1. Model atom cross sections
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The results of the calculations of W and DT/V as a function of E/N are

shown for NP=2 and Np=6 in Fig. 2 for a value of k l- x 10 16 cm2/eV. The two-term

values are always greater than for Np=6 and the difference between DT/W for Np=2

to Np-4 was always much greater than the changes from Np=4 to the largest value of

N used. This indicates that the values of the transport coefficients have

converged as a function of Np.

We have compared values of W and DT/ with Monte Carlo calculations.

7The comparison with the six-term results is within the quoted accuracy

of the Monte Carlo results over the entire range of parameters investigated.

Although there are no physical significances to the Legendre expansion

coefficients beyond the first, it is instructive to compare their magnitudes.

Figure 3 is a plot of the f I's for i-0 to 5 at an E/N of 24Td., E k = .2 eV, and

k - 10 xl0- 16 cm2 eV. This is a case where the two term approximation clearly

DreaKs aown. The interesting features here are the zeros in the higher order

coefficients occurring at successively higher energies and the maxima separated

by approximately the same energy for i 1 2. The most prominent feature is the

similarity in the shapes of the f i's on the high energy side of the zeros of the

functions. The changes in f0 and f if going from two to six terms for the same

model parameters are shown in Fig. 4. The dashed lines are the two term results.

The two term results underestimate the final values at both the low and high energy

ends while overestimating at the intermediate energies. This leads to the

conclusion that the reaction rate coefficients calculated using the two term

expansion tend to underestimate their true values.

17
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Figure 2. The transport coefficients W and D TI has a fpnction of E/N calculated

for NP=2 and N =6 in the model atom with k=10 x 10-1 cm 2and C k='2eV.
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Figure 4. Comparison of f 0and f1from the two term and six term solutions.
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2. Methane

The cross sections adopted for these CH calculations are as given by
4

8
Kleban and Davis. These cross sections shown as Fig. 5 are only

meant to represent the gross features of the transport data and were not rigorously

derived. We choose CH4 for a detailed analysis because of the large value of

the inelastic cross section in the region of the Ramsauer minimum in the elastic

cross section. Based on the previously assumed criterion of a small ratio of inelastic

to elastic cross sections, the two term analysis using these cross sections may be

expected to exhibit severe departures from the multi-term analysis. This has

indeed been the case.

The individual expansion coefficients f1 for i=O to 5 are shown in Fig. 6

for E/N = 2.42 Td. The main features seen in the case of the model atom can

also be seen here, i.e., the zeros and two maxima in the higher order coefficients.

Fieure 7 shows f_- and f. for N =2 and N =6fi Aq fnr r-hp mndpl ptrnm thp 1-wn -pv-
u a. r r

solution tends to overestimate fo and fl for the intermediate energies and

underestimates their values at higher energies.

Figure 8 shows results of calculations of W and DT/P for N=2 and N=6

over a range of E/N around the maximum in W. In no case is the two term value

of DT/ within 5% of the multi-term results. Again as for the model atom,

the change in going from Np=2 to 4 is larger than that from Np=4 to 6 or 8.

We conclude that the two term analysis is inaccurate for CH4 at this range

of E/N and, although the error seems to be decreasing slightly as E/N

is increased, there is probably no region where the two term solution in CH4

is valid to better than 5%.

Monte Carlo calculations we have made in CH4 verify our multi-term results

9for the transport coefficients. Lin, et al. have developed a moment method

for solving the Boltzmann equation which they applied to CH using the present
4

j cross sections. We compare well with their published values at 3.9 Td.j 21
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Figure 5. Methane cross sections used in the calculations.
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Figure 6. The first six Legendre expansion coefficients, f for 1-O to 5,

as a function of energy for methane at 2.42 Td.
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Figure 7.. Comparison of f0and f 1 from the two term and six term solutions.

The solid lines are Np -6 solutions and the dashed lines are f or NP02.
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Figure 8. The transport coefficients W and DT/P as a function of E/N' calculated

for N -2 and N -6 in methane.
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SECTION VI

NITROGEN RESULTS

The multi-term Boltzmann code has been used to calculate transport parameters

in N2 at 1, 40, and 100 Td. As input to the program, we use the set of cross

sections in N2 derived by Phelps. Our point here is to evaluate the error

introduced in the calculated W and DTN due to the two term expansion approximation

and to compare with other methods.

We have made the calculations in N using three different approximations
2

in the Boltzmann code and using a Monte Carlo method. These different approxi-

mations were used with the Boltzmann approach to get some feeling for where each

was more appropriate and easier to implement. These three approximations

were all possible using our multi-term code. We have already discussed two

of these in some detail, the two term and the multi-term approximations.

A different approximation is due 
to Baraff.

1 1

The Maximum Anisotropy Truncation (MAT) scheme proposed by Baraff begins by

assuming that the distribution function is highly elongated and an expansion in

Legendre functions is very slowly converging if at all. If the angular dependence

of f(v) can be represented by a delta function, the relation between adjacent

Legendre expansion coefficients is

f (E)  2l f (0. (21)

Rather than assuming that the higher order expansion coefficients can be

neglected (f,00 for i>l) as in the traditional two-term Boltzmann analysis, the

MAT truncation or uncoupling is based on Eq. (21). Baraff solves the two-term

Boltzmann equation using Eq. 21 to substitute for f2 in terms of f, in Eq. 
(6).

We have implemented the MAT in our code and have solved the Boltzmann equation
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keeping two terms and then six. If the higher order coefficients are indeed

negligible, it should make no difference how the series is truncated but one

method may require less terms than the other to converge. As will be seen,

the series truncation by setting f2=0 does yield two-term values closer to

the converged results than the MAT scheme.

The Monte Carlo calculations were performed using the code provided by

Ivan Reid and developed at the Australian National University.
7

Table I shows the results of our calculations of W and DTN using the four

approaches discussed above. The first three rows of values for W and DTN were

computed by setting fN = 0 in equation 6. A check of the Np=2 results

P. 3were made using the backward prolongation method. As in the previously discussed

model cases, the change in the values of W and D TN in going from Np=2 to

Np .4 are much greater than from NW=4 to N,=6. The differences between

the Np=2 and NP= 6 values are greater for higher values of E/N, as expected,

and are greater for DTN than for W.

The fourth and fifth rows are values calculated using the MAT assumption.

There is a large difference between the two truncation methods for N p=2

and a very small difference for the Np=6 cases. This is to be expected if

the series is converging. The MAT Np=2 values are in substantial disagreement

with the MAT Np=6 values.

The last row contains values of W and DTN calculated from a Monte Carlo method

There are some discrepancies between the Boltzmann results and the Monte Carlo

results at an E/N of 4.0x 10 1 7 Vcm2 . We have reason to suspect that the Monte Carl

code may be in error at the higher E/N values. For one thing, between collisions

in the Monte Carlo code, the electrons travel in straight lines. The effect
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TABLE 1

N 2 Drift Velocity - W

E/N - Ix l017 V cm 2  4 x 10-16 V cm2  1 x 10-1 5 V cm2

NMP=2 4.118x105 cm sec- 1 5.640 x l06cm sec- 1 1.111 x 107cm sec 1

Np-4 4.118 5.560 1.096

N- 6  4.118 5.558 1.096

MAT Np-2 4.149 6.177 1.286
MAT NP=6 4.118 5.559 1.105

Monte Carlo 4.12 5.42 1.083

N2 Diffusion Coefficients - DTN

E/N 1X 10- 17 V cm2  4 x 10- 16 V cm2  1X 10- 1 5 V cm2

Np-2 1.323 x 102 2cm-1sec 1. 744 x 102 2cm-lsec  2.035 x 102 2cm-sec1

NP-4 1.317 1.624 1.822

NP-6 1.319 1.630 1.850

MAT N -2 1.326 1.758 1.953

MAT Np"6 1.317 1.612 1.852

Monte Carlo 1.305 1.604 1.901
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of the field is to curve the electron trajectories. The straight line paths

may tend to reduce the calculated drift velocities, and this is what is seen

when comparing with the Boltzmann code.

At this point it is not too instructive to compare computing speeds among

the various methods. First, very little effort has been made to optimize the

speed requirements in the Boltzmann code. The Monte Carlo calculations are

very time consuming, but an exact figure on the savings using the Boltzmann code

is not available yet. Presently factors of 10 to 1000 in speed are saved by

using the Boltzmann code. Another point making a comparison difficult is the

fact that we are using the vector processing facilities of the CRAY-l computer.

It is hard to estimate what execution times would be without that option.
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SECTION VII

CONCLUSIONS

The determination of low energy electron scattering cross sections from swarm

experiments has relied almost exclusively on the two term Boltzmann analysis

up to now for the calculation of W and D T/. This has generally been assumed

valid for cases where the inelastic cross sections are much smaller than the

elastic. We have presented here a method for generalizing the Boltzmann analysis

to include an arbitrary number of terms in the Legendre expansion of the distri-

bution function. The method has been applied to two model cases and to nitrogen

as an example of a real gas with a large number of inelastic processes.

We find that, in general, the error introduced in the transport parameters

calculated using the two term approximation is greater at higher ratios of inelastic

to elastic cross sections. In the case of methane, the error decreases with

decreasing ratio of cross sections yet increasing E/N. The error in DTN for

any particular case is always much larger than for W.

Agreement between other methods of our multi-term results are good.

Comparison between the backward prolongation two term calculation and our code

with Np=2 is exact for all cases investigated. Our converged values of transport

coefficients compare well with Monte Carlo results within quoted accuracies

except for the higher E/N cases in N The reason for the discrepancies is not

understood. Finally, since this project began another multi-term Boltzmann method

9
based on moment techniques has appeared in the literature. We compare our results

in CH4 at 3.9 Td with the values published for W and D N as a function of Np

and find excellent agreement.
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We have been concerned here that part of the swarm experiment analysis

in which the Boltzmann equation is solved for the electron energy distribution

function and hence the transport coefficients. The iterative determination

of cross sections by comparison of calculated and measured values of W and D/P

is yet another issue about which only general remarks may be made. Kumar,

12
Skullerud, and Robson note that in order to glean maximum information

from the potentially extremely accurate swarm measurements, we should aim

for accuracies of .1% and 1% for W and D N, respectively, in the calculations.

We have shown here that such accuracies can not be achieved using the

13
two-term approximation. It is possible to show that in helium, a 2%

variation in the momentum transfer cross section leads to about a 2% change

in the calculated drift velocity over a certain range of E/N, but it

should be noted that the correspondence between change in cross sections

and change in drift velocity is certainly not in general true.

The validity of the two term approximation has been debated and questioned

for some time. If accuracies of.l% and 1% or less in W and DTN, respectively,

are desired from the calculations, the two term approximation is of limited

validity. In N2 at 40 Td, the two term W and DTN values differ from

the six term values by 1.4 percent and 6.9 percent, respectively. At 100 Td,

the differences are 1.6 percent and 10 percent, respectively. However, for 1 Td,

the two term values seem quite accurate. In CH4 the two term DTN is greater

than 5 percent different from the six term value for all values of E/N

investigated.

Attempts to quantify the error introduced by the two term approximation

have met with limited success. We plan to continue these efforts in this direction,

as some criteria for when the two term approximation is valid would be

very useful.

31
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A variety of problems may now be addressed using the code. One interesting

problem is the behavior of the high energy tail of the distribution function

as a function of the number of Legendre functions in the solution. This will

hopefully resolve some of the problems encountered in determining electronic

excitation or ionization rate coefficients simultaneously with the transport

coefficients. Finally, with the method presented here, we may now return to

the original problem of the analysis of the swarm experiments in water vapor

to obtain more accurate values of the low energy electron-water molecule

scattering cross sections.
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